DR ANTON GERDELAN
<GERDELA@SCSS.TCD.IE>

C PROGRAMMING

C PROGRAMMING REFRESHER

Brian Kernighan

C PROGRAMMING REFRESHER

C - THE LANGUAGE OF UNIX

» Fundamental
» Easy to learn, simple, powerful

» DIY memory management

> Tools Unix creators Ken Thompson (left, designed
B-1969, Go-2007) and Dennis Ritchie
» Features (right, designed C - 1972) of Bell Labs. src: ?

» Plain old data types

» Pointers and addresses

C PROGRAMMING REFRESHER

APPLICATIONS OF C -

» Performance

» Operating systems, drivers

» Games e A ‘
» 3d graphics, imaging Prof. Brian Kernighan (Princeton U.) - co-author

of "K&R C". We will come across his algorithms

) DeSktOp software work later. src: Wikipedia.

» Filei/o, tools

» Most things

C PROGRAMMING REFRESHER

PORTABILITY

» Almost all C also compiles as
» C++, objective C
» Very similar to

» C#, Java, D, PHP, JavaScript...

» Somewhat poss. to compile C++ into C

C PROGRAMMING REFRESHER

PRACTISE!

» How to get better
» read functions' instructions in man pages
» don't rely on auto-completion and Q&A websites
» watch more exp. people coding

» collaborate/share/code reviews/help - don't be shy

C PROGRAMMING REFRESHER

PRACTISE!

» Importance of playing around
» What don't you know?
» make a list

» Ask good questions

C PROGRAMMING REFRESHER

POD TYPES

» "plain old data" types

» C89 had
» unsigned and signed versions
» long and short versions

» people defined their own
boolean type

» C99 and C++ have bool

int
char
float
double
size t
pointers

typedef int custom name;

C PROGRAMMING REFRESHER

A STRUCTURED DATA TYPE - ARRAYS

» pros int my array[2048];

» multiple storage
int sum = 0;
for (int i = 0; i < 2048; i++){

sum += my array[i];

» simple
» fast - looping over adjacent memory

» random access }

N printf("%i\n", sum);

» fixed size at compile time - waste space
my array[238] = 10;

» elements must be same type
» insertion requires shuffling

» often come with a count variable to say how much is
used

C PROGRAMMING REFRESHER

STRUCT

. . . . typedef struct My Combo Type{
» combine variables into single int some variable:s

custom variable char some string[256];
} My Combo Type;
» useful for passing and returning

several variables from function My_Combo_Type my_combo;

C h | hich : my combo.some variable = 10;
» C++ has classes which are just e

structs with some extra properties "hello struct");

» typedef usua||y used to * there are various ways to initialise a struct
shorthand your struct as a data
type in C (not needed in C++)

C PROGRAMMING REFRESHER

ADDRESSES

. . . void some func(1nt* a);
» Unique location of each variable

int my variable = 0;

» Pass by reference some func(&my variable);

» Ampersand

» Dynamic blocks of memory don't
have an associated variable

» Refer to by their address

» A pointer can store an address

C PROGRAMMING REFRESHER

POINTERS, DEREFERENCING

» Stores memory address (just a
number)

» Looks confusingin C
» Can point to a pointers address

» Dereference to get value stored at
that address

» Pointers have a type, for
convenience

» Dereferencing a pointer to a struct

remind me to do a diagram
on the whiteboard here

and here

and here

C PROGRAMMING REFRESHER

DYNAMIC MEMORY ALLOCATION

» We will use C malloc rather than
C++ new keyword

remind me to do some whiteboard

» Know size of data in bytes
here

» sizeof () function
» Number of elements

» Heap

C PROGRAMMING REFRESHER

SIMPLIFY STRUCTURE

» Don't get carried away - only solve the problem at hand

» Time/cost/benefit
» Clarity, KISS

» Long functions are fine

» Blocks are good section separators { }
» Global variables are fine sparingly
» Less code, fewer files

» Quick and dirty is a great start - you can do a better one next time

sowrce Code

Assembly Code

Object Code

Executable Code

Fig. 2.1 The C Compilation Model

https://www.cs.cf.ac.uk/Dave/C/node3.html

Compiler Explorer - C++ Donate

Source:| Examples v x86-64 gcc 6.2 ~

Name: | max array Binary Intel syntax

Load Save Save as... Fulllink Short link

Code editor Assembly output

// Type your code here,
int square(int num) {
return num * num;

}

square(int):
pushq %rbp
movq %rsp, %rbp

movl %edi, -4(%rbp
movl -4(%rbp), %
imull -4(%rbp),
popq %rbp

ret

ompiler output — x86-64 gcc 6.2 (g++ (GCC-Explorer-Build) 6.2.0)

https://gcc.godbolt.org/

HIGHER ADDRESS

Commandline argument

UNMAPPED & environment variables

STACK
0 Stack Frames

ﬁ Dynamic Memory

HEAP
} Data Segment
]— Executable Code

LOWER ADDRESS

http://www.firmcodes.com/memory-layout-c-program-2/
http://www.firmcodes.com/memory-layout-c-program-2/
http://www.firmcodes.com/memory-layout-c-program-2/

C PROGRAMMING REFRESHER

THE [FUNCTION CALL] STACK

» each function launched is awarded a frame of memory for its
local variables

» if that function calls another function inside it - push a new
frame on the stack

» when a function ends - pop its frame from stack remind me to draw again
» most debuggers show you the call stack

» on crash can get a "backtrace" or "stack trace"
» are huge call stacks of tiny functions bad? - recursive vs loop?

» https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/
Mips/stack.html

https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/stack.html
https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/stack.html

C PROGRAMMING REFRESHER

HEADERS AND >1 FILE #include <asserth>

int g_global_counter_thing;
» Weakness of C - no packages int my_other_function(int* addr_of_thing) {
assert(addr_of_thing);
*addr_of_thing = *addr_of_thing + 1;
g_global_counter_thing++;
return *addr_of_thing;

» #include (cut-pastesin)

» to share declarations between files
(otherwise type them at top of every file))

» Header guards to avoid "symbol already

defined" circular includes
// anton.h - header for anton.c

» Using extern and static to share or hide //writtenin C99 - Anton Gerdelan - date

between files
#pragma once

» Usually don't put code instructions in #include <stdbool.h>

headers . .
// concise explanation

» exceptions int my_other_function(int* addr_of_thing);
extern int g_global_counter_thing;

MAKEFILES AND BUILD SYSTEMS

File Edit Search View Document Help

FLAGS = -g -Wall -wfatal-errors -m64 -std=c99 \
D #-fsanitize=address \
#-fsanitize=thread \ # not compat with address’
#-fsanitize=leak \
#-fsanitize=undefined \
} #-fcheck-pointer-bounds

*/home/anton/projects/storm_my_castle/Makefile.linux64 - Mousepad

L = lib/linux64
0BJS = \
src/GL/glew.c \
src/main.c \
src/game utils.c \
src/gl_utils.c \

} src/shader.c \
src/audio.cpp \
src/mesh.c \
src/smooth ground.c \
src/camera.c \
src/trees.c \
src/framebuffer.c \

} src/text.c \
src/console.c \
src/inventory.c \
src/building.c \
src/sky.c \
src/water.c \
src/peeps.c

} #src/frustum.c

STA LIBS ${L}/libglfw3.a
DYN LIBS = -L${L} -1GL -1X11 -1Xxf86vm -1Xrandr -lpthread \
|-1Xi -1Xinerama -1Xcursor -1dl -1rt -1m -1IrrKlang

all:

gcc ${FLAGS} -o castle ${0BJS} -I src/ ${STA LIBS} ${DYN LIBS}

C PROGRAMMING REFRESHER

LINKING

» Dynamic vs. static libraries

» Operating systems all have different formats
» dynamic: .so .dll .dylib
» staticorstubs: .a .1lib

» System libraries vs. local libraries

» We will try to avoid this topic

» Linux/Apple may need to link math library explicitly
» only if you use functions from math.h

» clang -0 my prog main.c -1m

C PROGRAMMING REFRESHER

WHAT T0 DO THIS WEEK

» Make sure that you can log in to lab computers

» Find an easy/working build env.
» Visual Studio or another IDE?
» Do you know how to step through code with a debugger?
» GCC or Clang?

» Make sure that you can compile a few simple C examples

» Do the warm-up assignment

» Let me know if it's too easy/too hard

C PROGRAMMING REFRESHER

TUTORIALS

» Tutorial
» analysing some code, discussion, solving problems
» bring pen+paper (or laptop if you want)
» We can modify tutorials to suit needs by request
» e.g.what are your concept / tools knowledge gaps?
» Assignments
» 2-3 weeks each (2x 3hr lab sessions for help/grading)
» Know how to do everything - work individually, but not in isolation

» Starter code or example in a lecture or tutorial

