
C PROGRAMMING

DR ANTON GERDELAN  
<GERDELA@SCSS.TCD.IE>

LEAP IN AND TRY THINGS. IF YOU SUCCEED,
YOU CAN HAVE ENORMOUS INFLUENCE. IF
YOU FAIL, YOU HAVE STILL LEARNED
SOMETHING, AND YOUR NEXT ATTEMPT IS
SURE TO BE BETTER FOR IT.

Brian Kernighan

C PROGRAMMING REFRESHER

C PROGRAMMING REFRESHER

C - THE LANGUAGE OF UNIX

▸ Fundamental

▸ Easy to learn, simple, powerful

▸ DIY memory management

▸ Tools

▸ Features

▸ Plain old data types

▸ Pointers and addresses

Unix creators Ken Thompson (left, designed
B - 1969, Go - 2007) and Dennis Ritchie
(right, designed C - 1972) of Bell Labs. src: ?

C PROGRAMMING REFRESHER

APPLICATIONS OF C

▸ Performance

▸ Operating systems, drivers

▸ Games

▸ 3d graphics, imaging

▸ Desktop software

▸ File i/o, tools

▸ Most things

Prof. Brian Kernighan (Princeton U.) - co-author
of "K&R C". We will come across his algorithms
work later. src: Wikipedia.

C PROGRAMMING REFRESHER

PORTABILITY

▸ Almost all C also compiles as

▸ C++, objective C

▸ Very similar to

▸ C#, Java, D, PHP, JavaScript...

▸ Somewhat poss. to compile C++ into C

C PROGRAMMING REFRESHER

PRACTISE!

▸ How to get better

▸ read functions' instructions in man pages

▸ don't rely on auto-completion and Q&A websites

▸ watch more exp. people coding

▸ collaborate/share/code reviews/help - don’t be shy

C PROGRAMMING REFRESHER

PRACTISE!

▸ Importance of playing around

▸ What don't you know?

▸ make a list

▸ Ask good questions

C PROGRAMMING REFRESHER

POD TYPES

▸ "plain old data" types

▸ C89 had

▸ unsigned and signed versions

▸ long and short versions

▸ people defined their own
boolean type

▸ C99 and C++ have bool

int  
 
char  
 
float  
 
double  
 
size_t  
 
pointers

typedef int custom_name;

C PROGRAMMING REFRESHER

A STRUCTURED DATA TYPE - ARRAYS

▸ pros

▸ multiple storage

▸ simple

▸ fast - looping over adjacent memory

▸ random access

▸ cons

▸ fixed size at compile time - waste space

▸ elements must be same type

▸ insertion requires shuffling

▸ often come with a count variable to say how much is
used

int my_array[2048];  
 

int sum = 0;  
for (int i = 0; i < 2048; i++){  

 sum += my_array[i];  
}  

printf("%i\n", sum);  
 

my_array[238] = 10;

C PROGRAMMING REFRESHER

STRUCT

▸ combine variables into single
custom variable

▸ useful for passing and returning
several variables from function

▸ C++ has classes which are just
structs with some extra properties

▸ typedef usually used to
shorthand your struct as a data
type in C (not needed in C++)

typedef struct My_Combo_Type{  
 int some_variable;  
 char some_string[256];  
} My_Combo_Type;  
 
My_Combo_Type my_combo;  
 
my_combo.some_variable = 10;  
strcpy(my_combo.some_string,
"hello struct");  
 
* there are various ways to initialise a struct

C PROGRAMMING REFRESHER

ADDRESSES

▸ Unique location of each variable

▸ Pass by reference

▸ Ampersand

▸ Dynamic blocks of memory don't
have an associated variable

▸ Refer to by their address

▸ A pointer can store an address

void some_func(int* a);  
 
int my_variable = 0;  
some_func(&my_variable);

C PROGRAMMING REFRESHER

POINTERS, DEREFERENCING

▸ Stores memory address (just a
number)

▸ Looks confusing in C

▸ Can point to a pointers address

▸ Dereference to get value stored at
that address

▸ Pointers have a type, for
convenience

▸ Dereferencing a pointer to a struct

remind me to do a diagram 
on the whiteboard here

and here

and here

C PROGRAMMING REFRESHER

DYNAMIC MEMORY ALLOCATION

▸ We will use C malloc rather than  
C++ new keyword

▸ Know size of data in bytes

▸ sizeof() function

▸ Number of elements

▸ Heap

remind me to do some whiteboard
here

C PROGRAMMING REFRESHER

SIMPLIFY STRUCTURE

▸ Don't get carried away - only solve the problem at hand

▸ Time/cost/benefit

▸ Clarity, KISS

▸ Long functions are fine

▸ Blocks are good section separators { }

▸ Global variables are fine sparingly

▸ Less code, fewer files

▸ Quick and dirty is a great start - you can do a better one next time

C PROGRAMMING REFRESHER

COMPILER SEQUENCE

▸ C is a human language

▸ Pre-processor

▸ Compiler

▸ Assembler

▸ Linker

▸ You can stop compiler at each
stage and inspect the output

▸ Type of issues at each stage src: https://www.cs.cf.ac.uk/Dave/C/node3.html

https://www.cs.cf.ac.uk/Dave/C/node3.html

C PROGRAMMING REFRESHER

ASM INSPECTION

▸ Matt Godbolt's 
gcc explorer  
https://gcc.godbolt.org/

▸ Insight into what your  
code compiles into

▸ How smart is your compiler?

▸ What does optimisation do?

▸ How does inline work?

▸ How efficient is C++ STL vs. our own data structures? Why?

https://gcc.godbolt.org/

C PROGRAMMING REFRESHER

A PROGRAM'S MEMORY MODEL

▸ reserved system stuff

▸ Stack (frame per function)

▸ Heap (malloc)

▸ BSS (uninitialised statics)

▸ .data (initialised statics)

▸ Text (code)

▸ +dyn libraries loaded in-
between stack and heap

src: http://www.firmcodes.com/memory-layout-c-
program-2/

http://www.firmcodes.com/memory-layout-c-program-2/
http://www.firmcodes.com/memory-layout-c-program-2/
http://www.firmcodes.com/memory-layout-c-program-2/

C PROGRAMMING REFRESHER

THE [FUNCTION CALL] STACK

▸ each function launched is awarded a frame of memory for its
local variables

▸ if that function calls another function inside it - push a new
frame on the stack

▸ when a function ends - pop its frame from stack

▸ most debuggers show you the call stack

▸ on crash can get a "backtrace" or "stack trace"

▸ are huge call stacks of tiny functions bad? - recursive vs loop?

▸ https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/
Mips/stack.html

remind me to draw again

https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/stack.html
https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/stack.html

C PROGRAMMING REFRESHER

HEADERS AND >1 FILE

▸ Weakness of C - no packages

▸ #include (cut-pastes in)

▸ to share declarations between files 
(otherwise type them at top of every file)

▸ Header guards to avoid "symbol already
defined” circular includes

▸ Using extern and static to share or hide
between files

▸ Usually don't put code instructions in
headers

▸ exceptions

// anton.h - header for anton.c 
// written in C99 - Anton Gerdelan - date 
 
#pragma once 
#include <stdbool.h> 
 
// concise explanation 
int my_other_function(int* addr_of_thing); 
extern int g_global_counter_thing;

#include <assert.h> 
 
int g_global_counter_thing; 
 
int my_other_function(int* addr_of_thing) { 
 assert(addr_of_thing); 
 *addr_of_thing = *addr_of_thing + 1; 
 g_global_counter_thing++; 
 return *addr_of_thing; 
}

C PROGRAMMING REFRESHER

MAKEFILES AND BUILD SYSTEMS

▸ Gross

▸ Worth learning
Makefile

▸ IDEs have custom
project files

▸ Meta-build systems
exist

▸ Linking libraries is
painful

C PROGRAMMING REFRESHER

LINKING

▸ Dynamic vs. static libraries

▸ Operating systems all have different formats

▸ dynamic: .so .dll .dylib

▸ static or stubs: .a .lib

▸ System libraries vs. local libraries

▸ We will try to avoid this topic

▸ Linux/Apple may need to link math library explicitly

▸ only if you use functions from math.h

▸ clang -o my_prog main.c -lm

C PROGRAMMING REFRESHER

WHAT TO DO THIS WEEK

▸ Make sure that you can log in to lab computers

▸ Find an easy/working build env.

▸ Visual Studio or another IDE?

▸ Do you know how to step through code with a debugger?

▸ GCC or Clang?

▸ Make sure that you can compile a few simple C examples

▸ Do the warm-up assignment

▸ Let me know if it's too easy/too hard

C PROGRAMMING REFRESHER

TUTORIALS

▸ Tutorial

▸ analysing some code, discussion, solving problems

▸ bring pen+paper (or laptop if you want)

▸ We can modify tutorials to suit needs by request

▸ e.g. what are your concept / tools knowledge gaps?

▸ Assignments

▸ 2-3 weeks each (2x 3hr lab sessions for help/grading)

▸ Know how to do everything - work individually, but not in isolation

▸ Starter code or example in a lecture or tutorial

